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Abstract: Electric power systems have experienced the rapid insertion of distributed renewable gen-

erating sources and, as a result, are facing planning and operational challenges as new grid connec-

tions are made. The complexity of this management and the degree of uncertainty increase signifi-

cantly and need to be better estimated. Considering the high volatility of photovoltaic generation 

and its impacts on agents in the electricity sector, this work proposes a multivariate strategy based 

on design of experiments (DOE), principal component analysis (PCA), artificial neural networks 

(ANN) that combines the resulting outputs using Mixture DOE (MDOE) for photovoltaic generation 

prediction a day ahead. The approach separates the data into seasons of the year and considers 

multiple climatic variables for each period. Here, the dimensionality reduction of climate variables 

is performed through PCA. Through DOE, the possibilities of combining prediction parameters, 

such as those of ANN, were reduced, without compromising the statistical reliability of the results. 

Thus, 17 generation plants distributed in the Brazilian territory were tested. The one-day-ahead PV 

generation forecast has been considered for each generation plant in each season of the year, reach-

ing mean percentage errors of 10.45% for summer, 9.29% for autumn, 9.11% for winter and 6.75% 

for spring. The versatility of the proposed approach allows the choice of parameters in a systematic 

way and reduces the computational cost, since there is a reduction in dimensionality and in the 

number of experimental simulations. 

Keywords: photovoltaic forecasting; principal component analysis; design of experiments; artificial 

neural networks 

 

1. Introduction 

The increase in the share of renewable energies in the electricity matrix around the 

world is a demand of economic, social and environmental interest [1]. The broad perspec-

tives for the use of fossil fuels reinforce the potential of these resources to supply electric-

ity [2]. Authors in [3] cite solar energy as the main focus for investors in recent years. In 

this context, to deal with unexpected changes in weather conditions and to carry out a 

rigorous control and management of solar energy in smart systems, it is necessary to 

adopt photovoltaic (PV) energy generation prediction models. The effectiveness of these 

models impacts system efficiency and safety, and the measurements provide reliable in-

formation for energy customers and suppliers [4]. 

However, several authors point out that the meteorological factors and the distribu-

tion networks' infrastructure conditions are aspects that strongly influence the efficient 
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use of solar energy as an alternative source [5]. The influence of some meteorological fac-

tors was tested in several studies, which reinforced the urgent need to propose methods 

for monitoring phenomena and robust forecasting models [6]. There are several method-

ologies for predicting solar irradiance, the most common being analytical, stochastic, em-

pirical, statistical models and artificial neural networks [6]. 

Artificial neural networks have been widely used to predict photovoltaic power gen-

eration [7]. Some research has pointed out the advantages of big data analysis for renew-

able energy forecasting [8].Works [9–11] present predictive solutions based on supervised 

or unsupervised machine learning. For this sake, such as the integrated autoregressive 

moving average model, pattern sequence prediction and artificial neural network (ANN) 

models are discussed. 

The PV output power prediction model developed by [7] was applied for short-term 

prediction, specifically, one hour ahead. In this case, the authors used the extreme learning 

machine (ELM) algorithm. For day-ahead photovoltaic output power prediction, the re-

searchers tested the model using daily average solar radiation (W/m²), wind speed (m/s), 

ambient and module temperature (°C). The ELM-based model was compared with two 

other models, one using support vector regression (SVR) and the other using ANN. The 

results showed that the ELM presented greater precision and less computational time in 

the short-term prediction of daily and hourly photovoltaic output power. 

To improve the ELM, [12] implemented a new model called expanded ELM (EELM) 

for photovoltaic energy forecasting. EELM breaks new ground by allowing automatic se-

lection of hidden layer number and random input weights. However, the higher extrapo-

lation capabilities of the EELM have only been demonstrated for a forecast horizon of less 

than 1 h. Based on the research works mentioned above, the effectiveness of a photovoltaic 

power generation prediction model can be made even more accurate through experimen-

tation with viable scenarios. According to [13], machine learning methods are very effec-

tive for predicting photovoltaic energy generation, given the non-linear nature of the var-

iables. However, the authors indicate that combined methods should be adopted in order 

to capture the stochastic characteristic of solar irradiance and the high variability of meas-

urements. Therefore, the main objective of this work is to propose a multivariate strategy 

based on design of experiments (DOE), principal component analysis (PCA), artificial 

neural networks (ANN) that combines the resulting outputs using Mixture DOE (MDOE) 

for photovoltaic generation prediction a day ahead. 

DOE is a statistical optimization tool in which each experimental run is a test and 

allows the investigator to discover some information about a process or system [14]. Sub-

sequently, the best configurations observed in the DOE approach are maintained, through 

a cluster analysis, to form a combined forecast. An ensemble forecast tends to improve the 

results of individual [15] models. The proposed combination considers that a mixture 

analysis calculates the definition of the set weights. Finally, the combined result obtained 

is analyzed to determine if it has equivalence with the original dataset. This analysis is 

performed using the confidence ellipse for the data at a 95% confidence level. 

2. Literature Review 

The intermittent nature of solar generation brings operational challenges to the elec-

trical system, which compromises the quality and security of supply, and can lead to volt-

age fluctuations and harmonic distortion [16]. One way to deal with this problem is to 

define accurate predictions [17]. 

The work developed by [18] proposed a method for predicting photovoltaic genera-

tion using a hybrid model that combines signal decomposition, artificial intelligence mod-

els, deep learning models and swarm optimization model. The performance of the pro-

posed system is not discussed if the amount of data increases. 

The model proposed by [19] investigates the performance of LSTM, convolutional, 

and hybrid convolutional–LSTM networks on residential photovoltaic generation data. 

The evaluation metrics were used to compare the results with a decomposable time series 
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forecasting model known as Prophet, considering different time scales. The author con-

siders forecasts individually and does not mention whether the combination of results 

improves the performance of forecast models. 

The authors at [20] have pursued a multivariate approach, based on the convolu-

tional neural network (CNN) that considers the use of climate variables in the forecasting 

process. The results, at the end of this computation, are combined to improve the final 

output. However, the elucidated model does not offer tools to the analyzer to indicate 

which variables/parameters may interfere with the forecast results. 

In some cases, finding variables that can help the forecasting process can be a chal-

lenging task. From the work developed by [21], it is interesting to observe the use of sat-

ellite images to compose the input data of the forecast models. The proposal is based on 

convolutional long short term memory network (Conv–LSTM) and extreme gradient 

boosting (XGBoost). However, the authors do not explore the combined prediction and 

dimensionality reduction of the data (since satellite images require more computational 

space compared to textual data). 

The combined forecast, based on scenarios, was explored in [22] and showed better 

results compared to the use of individual models. Even so, the work does not discuss how 

the parametric variation of the models influences the result, nor does it present a model 

for reducing the dimensionality of the data. 

Clustering of climate data by season of the year was considered in [23] using the 

Fuzzy C-Means (FCM) algorithm for one-day-ahead forecasting. The model based on least 

squares support vector machine (LSSVM) outperformed other forecasting models. The 

work does not consider the combined forecast. 

An approach based on gated recurrent unit (GRU), random forest was compared 

with the results of LSTM and RNN, using daily and monthly data [24]. The results 

achieved are interesting, but the work does not consider the seasonal separation of the 

data and does not allow the analyzer to verify which parameters influence the forecast 

result. 

The research carried out in [25] proposes an approach for clustering regions and fore-

casting photovoltaic generation, which lists locations with better viability for the installa-

tion of photovoltaic panels. A probabilistic method combined with machine learning 

models for forecasting photovoltaic generation is considered to be more suitable for the 

study horizon and data discretization, which is monthly. A study was carried out in Mex-

ico in regions with meteorological and topographic variability, finding that the points 

with the highest solar incidence are not always the points that promote the highest yield 

of energy generation. 

Artificial neural networks using the Levenberg–Marquardt training algorithm were 

considered in the research conducted by the authors in [26]. The selected meteorological 

variables include temperature, relative humidity, solar irradiance and wind speed. Keep-

ing the angle definitions, the study showed promise. However, the authors do not detail 

how the parametric variation of the forecast model impacts the results. 

The very short-term forecast conducted by [27] analyzes the data forecast with dis-

cretization varying from minute to minute related to the cloud accumulation indicator. In 

this study, the authors highlighted the use of neural networks and random forest models. 

The data considered in this study are not subjected to dimensionality reduction and the 

parametric configuration of the models is not detailed. 

A study conducted by [28] analyzed the performance of a regression network and 

particle swarm optimization model for a dataset from a plant located in Brazil. The time 

horizon considered was one day ahead with hourly discretization. The model parameters 

were statically defined and the impact of their variation on the prediction results was not 

considered.  

The key contributions of this research, trying to fill these gaps, are summarized in:  
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 Reduce the dimensionality of climate data to facilitate the capture by machine learn-

ing models of the intrinsic non-linearity of these time series, and mitigate possible 

noise that may exist in the data.  

 Group similar days using cluster analysis technique to compose the forecast. This 

also reduces the amount of data finished by the machine learning model.  

 Parameterize the execution of the experiment using the DOE statistical tool, which 

reduces the search space, saving computational resources and time without losing 

statistical reliability. 

The scientific community has turned its eyes to the various deep learning models [29] 

and their example-based training applications. Some variations of these algorithms can be 

mentioned, such as long short term memory networks (LSTMs), convolutional neural net-

works (CNNs), radial basis function networks (RBFNs), multilayer perceptrons (MLPs). 

LSTMs are a specialization of recurrent neural network (RNN) that preserve infor-

mation over a period of time, learning and storing that information whose interdepend-

ence is observed, being widely used in time series forecasting problems. The multiple lay-

ers of CNNs have filters that enable performing convolution operations and are especially 

useful for extracting features from data. RBFNs have the versatility to solve classification, 

regression and prediction problems because they are feedforward-type networks, which 

means input, hidden and output layers are present and the activation functions are a ra-

dial basis type. MLPs are also a type of feedforward network where input and output 

layers are fully connected, so weights and bias are calculated and activation functions are 

applied to compute the result. Table 1 shows a brief analysis of the application of these 

models recently. 

Table 1. Some recent applications of deep learning models. 

Author and Year Models Analysis Theme 

Peng et al. (2022) [30] LTSM 
Electricity consumption forecasting and petroleum 

products consumption 

Arvanitidis et al. (2022) [31] MLP-based hybrid solution Load forecasting 

Haghighat (2022) [32] MLP and Markov chain 
Predict the number of future patients and deaths re-

lated to COVID-19 

Yuan et al. (2022) [33] CNN Medical image segmentation 

Satyanarayana et al. (2022) [34] CNN Vehicle detection for traffic management 

Khalifani et al. (2022) [35] RBF, MLP and, CNN 
Prediction of sunflower grain yield under different cli-

matic conditions. 

Yang et al (2023) [36] 
RBF-NN combined with an 

ensemble model 

Predict the topological nature of gas-liquid mixtures in 

chemistry 

3. Proposed Methodology 

The proposed methodology is summarized in Figure 1, and essentially uses DOE, 

PCA and ANN. The methodological process of this work is based on research [37]. The 

authors encourage the application of this model due to its versatility, which reduces the 

computational effort and tends to produce good results. To facilitate the reader’s under-

standing, each topic that composes the steps of this process is detailed. 
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Figure 1. Proposed strategy for photovoltaic (PV) generation forecast using cluster analysis, princi-

pal component analysis (PCA), artificial neural network (ANN), design of experiments (DOE) and 

Mixture DOE (MDE). Source: own authors. 

The proposed methodology’s application helps operate active distribution networks 

and emerging transmission systems, since the operator is informed about the actual gen-

eration availability in the next time window. Thus, generation and system configuration 

adjustments are possible, enabling the utilities to provide a reliable service. 

In addition to the use of DOE, this work introduces the use of principal component 

analysis to reduce the dimensionality of climate data, with minimal loss of information, 

for training the machine learning model. 

3.1. Data Collection and Preparation 

An essential step that precedes data analysis is collecting and preparing time series. 

This data is often difficult to obtain due to the data protection policy of local generation 

plants [38], which can compromise advances of photovoltaic generation forecasting. The 

entire forecasting process can be compromised if this step is not seriously considered [39]. 

This step covers correcting missing data, normalizing data, adjusting data resolution and 

grouping data [40]. Real photovoltaic generation data were used from the PVOutput.org 

[41] repository, with the daily resolution, except for the data from the generation plants 

of the cities of Machado and Passos, which were acquired from the Federal Institute of 

South of Minas Gerais IFSULDEMINAS.  

Seventeen generating units are considered in this study; each one has a different gen-

eration capacity and is geographically separated throughout the Brazilian territory. The 

reason for choosing these units was due to the availability and quality of data in the time 

horizon of the study. Missing or null data were disregarded. 

The climatic data were obtained through the National Institute of Meteorology 

(INMET) [42], considering the weather stations closest to the previously selected photo-

voltaic generation plants, covering sixteen parameters: instantaneous temperature (°C), 

maximum temperature (°C), minimum temperature (°C), instantaneous humidity (%), 

maximum humidity (%), minimum humidity (%), instantaneous precipitation (°C), max-

imum precipitation (°C), minimum precipitation (°C), pressure instantaneous (hPa), max-

imum pressure (hPa), minimum pressure (hPa), wind speed (m/s), wind direction (°), 

wind gust (m/s) and radiation (KJ/m²). 
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In order to facilitate the identification of each photovoltaic generation plant, and their 

respective climatic data, the closest city to that measurement point was considered and 

these characteristics are listed in the following Table 2: 

Table 2. Detailing of photovoltaic generation plants. 

PV Plant  

(City Name) 
State 

System 

Size (kW) 

Data Range 

Period 

PV Plant  

(City Name) 
State 

System 

Size (kW) 

Data Range 

Period 

Aracaju Sergipe 7.370 2020–2021 Machado Minas Gerais 365 2018–2020 

Bagé 
Rio Grande do 

Sul 
10.600 2017–2018 Marabá Pará 5.940 2019–2021 

Barbalha Ceará 1.100 2019–2021 Marília São Paulo 5.500 2017–2021 

Barueri São Paulo 12.100 2018–2021 Nioterói Rio de Janeiro 5.775 2019–2021 

Belo Hori-

zonte 
Minas Gerais 7.200 2019–2021 Passos Minas Gerais 180 2019–2021 

Brasilia Distrito Federal 4.950 2018–2021 
Primavera do 

Leste 
Mato Grosso 16.640 2019–2021 

Itajaí Santa Catarina 2.200 2016–2019 Rio Grande Rio Grande do Sul 3.640 2017–2021 

Ituporanga Santa Catarina 27.00 2020–2021 Rio Negrinho Santa Catarina 4.960 2017–2021 

Ji-Paraná Rondônia 2.295 2019–2021     

The data series was divided into seasons, since each one presents different character-

istics that can be relevant factor for the success of a more accurate forecast. The increase 

or decrease in the efficiency of the panels can be influenced by environmental factors in 

the region, such as wind speed, humidity, dust, temperature, among others [43], justifying 

the segmentation by season. In Brazil, summers are hot and humid, with a predominance 

of rain in several regions, while winter causes drought and cold. From Figure 2, it is pos-

sible to identify these periods throughout the months of the year. 

 

Figure 2. Four subdivisions of the periods of the year for the Brazilian territory. Hot and rainy sum-

mers, dry winters and windy autumns. Source: own authors. 

Therefore, when it comes to photovoltaic generation, the panels can gain or lose effi-

ciency due to numerous uncontrollable factors, related to the season [44], such as the ac-

cumulation of dust, predominance of clouds over the generation area, cooling of solar 

cells, etc. The separation of data into seasons aims to mitigate these effects so that the 

forecast model does not suffer from the inconsistencies that can be generated in the train-

ing process. 

Since each photovoltaic generation plant has different generation capacity, and the 

climatic data have different measurement units, two ways of normalizing the data were 

considered, placing them in a feasible scale for the optimization process through algo-

rithms of machine learning. 

The first, which uses the maximum and minimum values of time series, rescales the 

data within the interval between 0 and 1 and is observed in Equation (1), where “��” is the 

observed value, “min(�)” the minimum value of time series and “max (�)” the highest 

value [45]:  

��� =
������ (�)

���(�)���� (�)
  (1)

The other normalization technique, known as standardization or Z-Score method, 

uses the mean and standard deviation of the series itself, making the normalized value 
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centered around the mean with unit standard deviation [46]. The standardization calcu-

lation is performed according to the Equation (2), where “��” is the observed value, “μ” is 

the mean and “σ” the standard deviation. 

��� =
�� − μ 

σ
 (2)

3.2. Hierarchical Cluster–Grouping of Similar Days 

After dividing the data series into seasons, the hierarchical clustering technique was 

used to group the days with certain similarity levels. These grouping methods initially 

consider each data point (or object) as a group [47]. Then, similar objects begin to coalesce 

to form groups. Figure 3, in a simplified way, schematizes the separation of the six data 

points into groups and structures the minimalist representation of the respective dendro-

gram. The distance between the groups that form is calculated by the linkage method, 

which in this work considered the following two: Complete and Ward. 

 

Figure 3. Schematic example of grouping six data points and their representation in the dendro-

gram. Source: own authors. 

The Complete linkage method, also known as the furthest neighbor, calculates the 

maximum distance between an object in a given cluster and another object belonging to 

another cluster. In general, the diameter of the formed groups tends to have similar sizes. 

The Complete method was chosen because it performs well in certain cases [48] and is 

represented by Equation (3), where “D(x, y)” is the distance between the clusters “�” and 

“�” and “�[i]” symbolizes an object “�” in the cluster “�” [49]. 

D(x, y) = �����{D(�[�], �[�])} (3)

Ward’s linkage method minimizes the sum of squares within each cluster, and the 

distance between these clusters is calculated by the sum of squared deviations from the 

points to the centroids. In this case, each group tends to have the same number of objects. 

The choice of Ward’s method to compose the experiments of this work was because that 

it demonstrates good separability between groups and consistency [50]. Equation (4) cal-

culates the Ward’s distance, where “|�|” represents the number of objects present in clus-

ter “y”, and so on. 

D(x, y) = �
|�|�|�|

|�|�|�|�|�|
D(�, �)� +

|�|�|�|

|�|�|�|�|�|
D(�, �)� −

|�|

|�|�|�|�|�|
D(�, �)�  (4)

3.3. Principal Component Analysis (PCA) for Dimensionality Reduction 

PCA is a multivariate tool widely used in the literature [51]. It reduces the dimen-

sionality of the dataset, to an uncorrelated set, known as principal components, that may 

explain the whole original set. It can separate out information that is redundant and ran-

dom. The representation of the variance of the data tends to be in the first components 
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(where the first component has the maximum explanation compared to the other compo-

nents [52] and so on). The noise tends to be in the last components, that is, the principal 

components are uncorrelated linear combinations [53] of the original variables weighted 

by the eigenvalues. 

According to [54], it can be described briefly by considering � observation vectors 

��, ��, … , �� and the respective mean vector �� (where the ellipsoid axis origin will be). 

The change to the origin �� is described �� − ��. Rotating the axis centered on the mean 

results in principal components, which are uncorrelated. The rotation movement multi-

plies each ��  by an orthogonal matrix �, according to Equation (5):  

�� = ���  (5)

If � is orthogonal, then ��� = �, and the distance to the origin remains the same, as 

observed in Equation (6):  

��
��� = (���)

�(���) = ��
������ = ��

���  (6)

The rotation transforms �� to a �� point, keeping the same distance from the origin. 

The calculation of matrix � allows the discovery of the axes of the ellipsoid, making � =

�� uncorrelated. In this way, the sample covariance matrix of �, �� = ���� is desired to 

be diagonal, as in Equation (7):  

�� = ���� =

⎝

⎛

���
� 0 ⋯ 0

0 ���
� … 0

⋮ ⋮  ⋮
0 0 ⋯ ���

�
⎠

⎞ (7)

where � is the covariance matrix of ��, ��, … , ��. Since ��′� are the eigenvalues of � and 

� an orthogonal matrix in which the columns are the normalized eigenvectors of �, 

�������, ��, … , ��� = ���� = � . The transpose of matrix �  is the orthogonal matrix � 

that diagonalizes �, as shown in Equation (8): 

� = �� = �

��
�

��
�

⋮
��

�

� (8)

so that �� is the normalized �th eigenvector of  �. The principal components are repre-

sented by the variables �� = ��
� �, �� = ��

� �, …, �� = ��
� � in � = ��. The diagonal ele-

ments of ���� are eigenvalues of �. This makes the eigenvalues  ��, ��, … , �� of � the 

variances of the principal components �� = ��
��, as described in Equation (9): 

���
� = �� (9)

Since the eigenvalues are the variances of the principal components, the expression 

of percentage of explanation by the first � components is used:  

Variance explanation proportion =
������⋯���

������⋯���
  (10)

Reducing the dimensionality of meteorological data, for training machine learning 

models, avoids overfitting and allows the original data to be replaced by this new dataset, 

reduced, but retains most of the original information [55].  

The application of the PCA method extends to problems in different areas and has 

contributed to interesting solutions. For example, recently, some authors [56] have pro-

posed a variation of the PCA combined with the modified affinity propagation clustering 

algorithm (called PCA-MAP) to classify tourist preference information. It is also worth 

mentioning the work by [57] that explores day-ahead carbon price prediction using PCA 

combined with several machine-learning methods, providing dimensionality reduction 

from 37 variables to only 4. 
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This work considers data dimensionality reduction in two specific cases, depending 

on the methodological process, defined by the consideration, or not, of the meteorological 

variables.  

Figure 4 exemplifies the structure of the data collected, with each line representing a 

measurement day and each column representing an observed variable. The first column 

consists of the photovoltaic generation data. The others (2 to 17) comprise the climatic 

variables. The PCA is applied, when the climatic variables are considered in the experi-

mental run, in columns 2 to 17 of Figure 4.  

 

Figure 4. PCA is applied to reduce the climatic variables of columns 2 to 17. Source: own authors. 

On the other hand, when the experimental process does not consider the climatic 

variables, but only the photovoltaic generation variables, a data restructuring is necessary. 

In this case, the data stacking process for model training is exemplified in Figure 5. Here, 

six generation days before the observed measurement day are chosen. These six days will 

compose the training data referring to that observed day, as observed in Figure 5 “A” 

(green) and “B” (yellow) markings. As one walks through the generation data structure, 

the sliding window forms new training data for the measurements of subsequent days. 

Finally, the PCA is applied to this dataset (columns 2 to 7). The region highlighted in red 

is disregarded in this situation because it has many null cells, which represents noise for 

the prediction model. 

Thus, when the climatic variables are considered, there is a reduction of 16 observa-

tions. When only the photovoltaic generation is considered, there is a formation of six 

variables for dimensionality reduction. 
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Figure 5. Reorganizing generation data for training: stacking data for training based on information 

from the previous 6 days. Source: own authors. 

3.4. Artificial Neural Networks (ANN) Parametrization  

There are numerous situations in which using of artificial neural networks is satis-

factory [58], such as pattern recognition, classification, fault detection and PV generation 

forecasting [59]. Since the photovoltaic generation prediction problem has, in essence, 

non-linear characteristics, machine learning models try to efficiently capture these varia-

tions and present them in the output [60], but with the premise that there is no model in 

the literature that performs well in all cases. ANNs were chosen in this work because of 

their superior performance compared to other machine learning models [61]. 

Essentially, an ANN is made up of three layers [62], in its minimal architecture. The 

first layer is known as data input. This layer may contain one or more neurons. The second 

layer, known as the intermediate (or hidden) layer, may not be unique and has several 

neurons set by the analyzer, independent of the number chosen for the first layer. Finally, 

there is the last layer, or output layer, where the results are obtained after the training and 

testing process. 

Neurons are present in all layers and constitute the network’s architecture, and can 

be added (or removed) from each layer as it fits well (or poorly) to the problem at hand. 

The anatomy of a neuron shows that it receives an input, computes the weights relative 

to that input, and returns the result via an activation function [63]. The training process 

consists of transferring information from one layer to another, by optimizing the adjust-

ment of weights in the neurons, until a condition is reached. Equation (11) expresses, in a 

simplified way, the mathematical modeling of this calculation: 

z = �(� + �. �) = � �� + � ����

�

���

� (11)

where 'z' is the network output, 'b' the bias value, 'x' the input information, 'w' the related 

weight and 'n' the total number of inputs. 

The definition of parameters that optimize the functioning of the ANN is not imme-

diate, and often there is no consensus regarding certain choices, such as the number of 

layers and the number of neurons in each layer [64]. Some authors consider the choice of 

parameters by trial-and-error [65] and not in a systematic way. The ANN parameters con-

sidered in this work were based on [66] and [67] research and are detailed in the next 

section, which presents DOE as a statistical tool for reducing the parametric search space. 
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3.5. Factorial Design of Experiments (DOE) 

It is noticed in the literature, a vast record of the use of DOE, such as for parametric 

calibration of prediction models [68], to choose the training set [69] and also applied pa-

rameter optimization in manufacturing simulations [70]. The DOE, through the composi-

tion of its statistical tools, allows the relationship between cause and effect to be system-

atically identified, which can lead to a solution that optimizes the process. In general, there 

is a choice of factors and levels, response variables, the structure of the experimental de-

sign and the execution itself [14]. The logic of choice is intrinsically linked to the type of 

study. 

Full or fractional factorial designs, usually with two levels, are well accepted by the 

industry [71]. Full factorial designs consider all possible combinations, which generates a 

search space with a dimension of 2k, where k is the number of factors. It is understood 

that, by increasing the number of factors (even their respective levels), full factorial design 

leads to an extremely high number of experimental runs, which can generate high costs 

and high time demands [72]. Thus, this study considers a two-level fractional factorial 

design due to the natural limitations of a simulated experiment, which are the scarcity of 

computational resources and time. 

Figure 6 shows a schematic representation to clarify the potential of DOE, which al-

lows the analyzer to restrict the parametric search space to factors that potentially lead to 

the solution of the problem. Scanning the entire search space implies a high computational 

and time cost. Thus, based on references (from the literature, for example), it manages to 

reduce this search space to a specific set of parameters, which naturally does not guarantee 

the optimal solution, but it allows having an idea of this adjustment and how the factors 

interact with each other. 

 

Figure 6. Room analogy: The analyzer knows there is a resource and time constraint to scan the 

entire room for the potential optimal parametric match. However, based on previous experience (or 

previous research) he knows that there is a reduced search region that could lead to a good solution 

to the problem (not necessarily the optimal one). Source: own authors. 

A lot of data, both from photovoltaic generation and climate, as well as the number 

of parameters from the machine learning models that can be combined, challenge the pro-

cessing power of current computers, which is limited [40]. When referring to research in-

volving computer simulation, there is usually many data and/or parameters involved. In 

order to mitigate the computational cost of the experiments of this work, the DOE was 

considered to reduce the parametric search space as it is an effective tool for this purpose 

[73].  

The quality of reducing (or increasing) the depth of this search using DOE is meas-

ured in terms of confounding and is summarized in the experiment’s resolution. When 

there is a shortage of resources to carry out the experiments, in addition to choosing the 

levels of factors, the DOE allows the reduction of experimental runs, maintaining the 
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statistical reliability [72] of these runs. As shown in Figure 7, this work considered level 

IV resolution, since at this level the main effects are considered without confusion with 

the interactions of two factors. 

. 

Figure 7. Factorial design: experimental resolutions. This work considers 11 factors and 32 experi-

mental runs. Source: own authors. 

This research considered 11 factors in the experimental architecture, being separated 

into five factors related to the time series and six factors associated with the artificial neu-

ral network. The versatility of the experimental design, related to the essence of the pho-

tovoltaic generation prediction problem, allowed the choice of factors and their respective 

levels to be based on previous works [67], and one of these works also considers this object 

of study [37]. Knowing that there are numerous combinations of factors and that each 

factor has numerous levels, this search space becomes reduced when using DOE and, in 

this way, the analyzer can make changes in the factors or levels and understand the impact 

that this change has on the quality of the results. Table 3 summarizes each factor consid-

ered. 

Table 3. DOE Factors and Levels. 

Cate-

gory 
DOE Factors 

DOE Level 

Values 

Variable 

Type 
Description 

Time 

Series 

Factors 

(A) Number of principal compo-

nents 

2 

Integer 

In this work, from the second component, a rep-

resentativeness of more than 80% of the variance 

of the original data was observed. Thus, the use 

of the first 2 or 3 main components is tested. 

3 

(B) Considers use of climate var-

iables 

True 

Boolean 

In some cases, the use of climatic variables may 

not be interesting and should be tested. This is 

usually due to several factors, such as the dis-

tance from the weather station to the generation 

plant, dust on the panels, etc. 

False 

(C) Cluster linkage method 

‘Ward’ 

String 

Here, similar days (based on weather variables) 

are grouped together to compose the training. 

Appropriate clustering methods are tested. 
‘Complete’ 

(D) Number of clusters 

3 

Integer 

The classification into 3 or 4 clusters aims to 

identify the groupings of characteristics that best 

perform the forecast model: sunny, rainy 

(cloudy), dry (dust) and/or humid. 

4 

(E) Normalization method 

‘Standardiza-

tion’ 
String 

In this case, normalization processes are being 

tested that make use of (1) mean and standard 

deviation and (2) maximum and minimum to 

equalize data in terms of their scales, without 
‘Min-Max’ 
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distorting or losing information. Thus, the values 

approximate the learning functions of the model. 

ANN 

Factors 

(F) Number of hidden layers 
1 

Integer 
The number of hidden layers is usually one or 

two, with zero or three layers being little used. 2 

(G) Multiplication factor for the 

number of units per layer 

1.5 

Double 

Although there is no definition of optimal neural 

network architecture, this work considers the 

definition of the number of neurons in the inter-

mediate layer based on the following formula: (K 

× (N + 1)), where N is the number of inputs, and 

K =1.5, 2. Here, the value of K is associated with 

the levels of this factor. 

2 

(H) Learning rate 

0.1 

Double 

The learning rate defines the size of the step that 

the model takes in the search space. In this case, 

0.1 and 0.9. 
0.9 

(I) Number of epochs for train-

ing 

100 

Integer 

The number of epochs defines the number of it-

erations that the model will process during the 

training step. Here, it is checked whether a low 

number (100) or a high number (400) are suffi-

cient to produce good prediction results. 

400 

(J) Training algorithms 

‘Scaled Con-

jugate Gradi-

ent’ String 

Updating the neural network weights and bias is 

a very important step and is performed by a 

training algorithm. Two were chosen to compose 

the prediction process: ''Scaled Conjugate Gradi-

ent" and "Levenberg–Marquardt". 

‘Levenberg-

Marquardt’ 

(K) Transfer function 

‘Symmetric 

sigmoid’ 
String 

Commonly known as an activation function, a 

transfer function plays the role of computing the 

output from one layer of the network to the layer 

immediately following it. 
‘Radial basis’ 

3.6. Mixture Design of Experiments (MDOE) for Defining the Ensemble Weights  

Combining forecasts is to try to achieve better performance against the forecasters 

when considered individually [74]. The literature reports an empirical benefit of this com-

bination in improving the forecast results [75]. Thus, this work uses Mixture DOE to com-

bine the prediction results. Specifically, a mixing experiment considers finding the opti-

mal proportions for each ingredient, that is, in the prediction problem, this proportion is 

identified by the weights �� and the factors represent the ingredients of this analogy. 

Here, the combined value (which is taken as an answer) depends only on the weights 

(proportion of ingredients) and not just on the factors themselves. According to [76], the 

weights �� are non-negative, expressed as fractions of the mixtures, whose sum of all � 

factors (ingredients) must be unity, as described in Equation (12): 

� ��

�

���

= �� + �� + ⋯ + �� = 1.0 (12)

Considering an example with three factors, or ingredients, there is a graphic repre-

sentation of this arrangement as a triangle, as seen in Figure 8. The vertices are considered 

pure mixtures, because at these points the values of the weights of the other factors are 

null [14]. As the number of factors increases, the geometric representation also changes. 

For example, when considering four factors, the representation is given by a tetrahedron. 

Several factors greater than or equal to five are feasible, but there is no longer any possi-

bility of visual representation. 
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Figure 8. Mixture DOE example: Simplex Design with three factors. Source: own authors. 

The metrics for evaluating and defining the weights is based on the mean absolute 

percentage error (MAPE), which has already been used in recent forecasting works [77], 

and on the root mean squared error (RMSE), which penalizes errors of greater magnitude, 

for comparison purposes. The error calculation is obtained as shown in Equation (13), for 

MAPE, and in Equation (14), for RMSE: 

���� =  
1

�
 �  �

�� − ���

��

�

�

���

× 100 (13)

���� =  ��
(��� − ��)�

�

�

���

 (14)

so that �� is the actual measurement value of the photovoltaic generation, ��� is the pre-

dicted value and � corresponds to the number of predicted points. 

Figure 9 details the pseudocode that automates the prediction process described in 

the previous topics. The implementation of this algorithm took place through the Matlab 

software. 
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Figure 9. Proposed pseudocode to automate the photovoltaic forecasting process. Source: own au-

thors. 

4. Case Study 

Since, in Brazil, photovoltaic generation represents the largest share of renewable en-

ergy growth [78], this case study considered seventeen photovoltaic generation plants lo-

cated in different regions of the country. The forecast was performed one day ahead, con-

sidering each season of the year, that is, at the end of the execution of the experiments, 

there were four forecasts for each generation plant (one for each season of the year). The 

forecast day was chosen randomly, given that the time interval of each generation plant 

did not always coincide (due to lack of data, for example). 

The number of principal components, as a DOE factor, can be considered one of the 

key items in this research, as it leads to a reduction in the dimensionality of climatic vari-

ables. The levels vary between 2 and 3, which means that sometimes two components 

were used to train the model, and sometimes three components were used. The reduction 

in dimensionality implies a small loss of information. Thus, it is interesting to present the 

accumulated percentage of the variance at each level, for each city (generation plant). 

From Figure 10, it is observed that the variance explanation of the climate variables, 

for each generation unit and considering each season of the year, is above 60%, with an 

approximate average of 75% of total explanation. For this graphical demonstration, the 

'MaxMin' normalization process was used. 
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Figure 10. Overview of the percentage of representation of the variance of climate variables consid-

ering two principal components. Source: own authors. 

When considering three components, a natural increase in the explanation of the var-

iance of climatic variables is perceived, which is shown in Figure 11. In this case, the per-

centage of explanation accumulated is above 75% for all generation plants and seasons, 

with an approximate average of 85% of explanation for all seasons. This means that if 

three components are used, there is a greater representation of the data set, which implies 

more information for adjustment and training of the forecast model. The idea is precisely 

to test, using the DOE statistical tool, if there is interference in the prediction results when 

an extra component is considered (or not). 

 

Figure 11. Overview of the percentage of representation of the variance of climate variables consid-

ering three principal components. Source: own authors. 

4.1. Experiment Preparation Stage 

All generation data were acquired from the pvoutput.org [41] repository, except for 

two photovoltaic generation plants, Machado and Passos, whose data were provided by 

the Federal Institute of Education, Science and Technology of South of Minas Gerais - 

IFSULDEMINAS. In order to facilitate the collection of this data, in an automated way, a 

script was implemented in the Java programming language that makes a request to the 

repository and download the data series with daily discretization, organizing them by 
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generation plant. It is important to highlight a limitation that was observed in relation to 

the availability of data: there are more than 17 generation plants available in the reposi-

tory, but many of them do not have the respective climate information, which was ac-

quired from another database, the National Institute of Meteorology.–INMET [42]. 

The data collection stage was challenging, as much of this information had missing 

data, with noise and often without public access. Thus, since meteorological stations are 

dispersed throughout the Brazilian territory, they do not always coincide with being close 

to a given photovoltaic generation plant or even with the availability of climatic data, 

which reduces the number of experimental cases. In addition to the fact that climate data 

is not available for all generation plants (and vice versa), there is also the challenge of 

synchronizing measurement periods: often there is generation data for a range of dates, 

but there is no information weather forecast for the same period. When this happens, that 

time interval must be discarded. This is a reason why it was not possible to consider the 

same forecast day (respecting the season) for all generation units. 

After eliminating missing data and synchronizing the date periods, the data was sep-

arated into seasons so that the training of the forecast model took place only with the 

specific data of that season. This process was considered because it is believed that each 

season of the year has its own characteristics, which can affect energy generation. For ex-

ample, excess dust due to dry weather, or even the passage of clouds in periods of rain, 

can change the behavior and correlation of the data. 

4.2. Day Ahead Forecasting by Season 

The forecast is performed for each generation plant, taking one day ahead per season. 

With the DOE matrix, as in Table 4, all 32 experimental runs must be executed, which 

essentially translates the parametric variation in the search space. For each experimental 

run, the artificial neural network is re-initialized, in order to avoid interference in the re-

sults from one experimental run to another. 

The experiments were performed in an automated way, whose algorithm was imple-

mented in the Matlab® language. Thus, the average MAPE of each season of the year is 

included in Table 5, for all the experimental runs defined above. 

Table 4. Structure of the DOE experimental matrix. 

RUN 
Time Serie Factors ANN Factors 

A B C D E F G H I J K 

1 2 True Ward 3 Standardization 1 1.5 0.1 100 
Scaled Conjugate Gradi-

ent 

Symmetric sig-

moid 

2 3 True Ward 3 Standardization 2 1.5 0.1 400 Levenberg–Marquardt 
Symmetric sig-

moid 

3 2 False Ward 3 Standardization 2 2 0.1 100 
Scaled Conjugate Gradi-

ent 
Radial basis 

4 3 False Ward 3 Standardization 1 2 0.1 400 Levenberg–Marquardt Radial basis 

5 2 True Complete 3 Standardization 2 2 0.9 400 
Scaled Conjugate Gradi-

ent 

Symmetric sig-

moid 

6 3 True Complete 3 Standardization 1 2 0.9 100 Levenberg–Marquardt 
Symmetric sig-

moid 

7 2 False Complete 3 Standardization 1 1.5 0.9 400 
Scaled Conjugate Gradi-

ent 
Radial basis 

8 3 False Complete 3 Standardization 2 1.5 0.9 100 Levenberg–Marquardt Radial basis 

9 2 True Ward 4 Standardization 1 2 0.9 400 Levenberg–Marquardt Radial basis 

10 3 True Ward 4 Standardization 2 2 0.9 100 
Scaled Conjugate Gradi-

ent 
Radial basis 
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11 2 False Ward 4 Standardization 2 1.5 0.9 400 Levenberg–Marquardt 
Symmetric sig-

moid 

12 3 False Ward 4 Standardization 1 1.5 0.9 100 
Scaled Conjugate Gradi-

ent 

Symmetric sig-

moid 

13 2 True Complete 4 Standardization 2 1.5 0.1 100 Levenberg–Marquardt Radial basis 

14 3 True Complete 4 Standardization 1 1.5 0.1 400 
Scaled Conjugate Gradi-

ent 
Radial basis 

15 2 False Complete 4 Standardization 1 2 0.1 100 Levenberg–Marquardt 
Symmetric sig-

moid 

16 3 False Complete 4 Standardization 2 2 0.1 400 
Scaled Conjugate Gradi-

ent 

Symmetric sig-

moid 

17 2 True Ward 3 Min–Max 1 1.5 0.9 100 Levenberg–Marquardt Radial basis 

18 3 True Ward 3 Min–Max 2 1.5 0.9 400 
Scaled Conjugate Gradi-

ent 
Radial basis 

19 2 False Ward 3 Min–Max 2 2 0.9 100 Levenberg–Marquardt 
Symmetric sig-

moid 

20 3 False Ward 3 Min–Max 1 2 0.9 400 
Scaled Conjugate Gradi-

ent 

Symmetric sig-

moid 

21 2 True Complete 3 Min–Max 2 2 0.1 400 Levenberg–Marquardt Radial basis 

22 3 True Complete 3 Min–Max 1 2 0.1 100 
Scaled Conjugate Gradi-

ent 
Radial basis 

23 2 False Complete 3 Min–Max 1 1.5 0.1 400 Levenberg–Marquardt 
Symmetric sig-

moid 

24 3 False Complete 3 Min–Max 2 1.5 0.1 100 
Scaled Conjugate Gradi-

ent 

Symmetric sig-

moid 

25 2 True Ward 4 Min–Max 1 2 0.1 400 
Scaled Conjugate Gradi-

ent 

Symmetric sig-

moid 

26 3 True Ward 4 Min–Max 2 2 0.1 100 Levenberg–Marquardt 
Symmetric sig-

moid 

27 2 False Ward 4 Min–Max 2 1.5 0.1 400 
Scaled Conjugate Gradi-

ent 
Radial basis 

28 3 False Ward 4 Min–Max 1 1.5 0.1 100 Levenberg–Marquardt Radial basis 

29 2 True Complete 4 Min–Max 2 1.5 0.9 100 
Scaled Conjugate Gradi-

ent 

Symmetric sig-

moid 

30 3 True Complete 4 Min–Max 1 1.5 0.9 400 Levenberg–Marquardt 
Symmetric sig-

moid 

31 2 False Complete 4 Min–Max 1 2 0.9 100 
Scaled Conjugate Gradi-

ent 
Radial basis 

32 3 False Complete 4 Min–Max 2 2 0.9 400 Levenberg–Marquardt Radial basis 

Table 5. Forecast results in terms of their mean errors (MAPEs) after each experimental run, sepa-

rated by season. 

RUN 
AUTUMN WINTER SPRING SUMMER 

MAPE STD RMSE MAPE STD RMSE MAPE STD RMSE MAPE STD RMSE 

1 17.62 3.79 12,263.43 15.63 3.11 8260.91 15.19 3.70 12,152.80 14.22 1.68 14,254.12 

2 15.72 2.23 15,443.84 15.50 3.19 16,272.15 9.71 1.46 7220.57 13.76 0.86 6403.48 

3 15.30 1.68 6380.93 16.21 0.83 4474.02 17.35 3.06 8783.22 20.21 2.12 10,089.92 

4 19.14 2.22 7502.31 15.40 1.34 7912.06 16.26 2.09 8126.95 14.24 2.97 9140.32 

5 14.99 1.61 13,006.54 13.30 1.18 13,618.22 11.42 0.78 5404.76 15.36 1.06 6724.76 

6 12.90 2.14 4836.03 14.70 3.54 8730.40 10.25 0.57 4824.22 16.66 3.15 8711.77 

7 17.89 1.35 10,530.33 19.15 2.43 11,293.21 20.20 2.64 14,654.62 19.79 3.46 9184.13 
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8 16.56 1.77 11,666.71 15.86 1.42 5673.78 17.11 2.94 6551.62 17.43 2.14 7953.46 

9 17.35 1.72 14,602.11 14.86 1.59 6600.87 11.50 1.25 10,166.35 16.75 0.99 6877.91 

10 17.23 1.89 13,261.40 15.15 1.32 8403.91 10.35 1.48 5647.03 13.51 1.96 4540.48 

11 19.28 3.74 5959.83 14.99 2.03 5872.06 17.50 2.55 8885.20 19.69 5.34 6767.52 

12 20.26 2.30 8321.50 16.62 3.25 7128.63 16.81 1.35 10,393.82 16.17 1.50 3965.89 

13 15.95 1.21 14,034.62 15.19 1.03 7798.53 9.21 1.46 2201.11 14.54 1.96 4670.43 

14 18.10 2.09 13,662.72 12.97 2.13 4370.27 10.78 2.36 5959.56 14.49 1.14 7609.56 

15 21.06 1.60 6738.31 18.55 1.06 11,564.00 16.59 2.83 10,795.95 20.05 5.16 5891.62 

16 14.18 2.00 5268.02 15.84 2.22 18,227.70 16.77 1.67 6107.37 17.89 2.35 5984.99 

17 17.94 2.31 15,591.69 15.32 0.67 9394.71 15.43 1.86 10,950.43 13.91 1.17 7316.57 

18 18.55 1.76 15,593.04 18.51 3.33 9347.63 13.38 3.30 10,720.13 14.08 1.97 6016.78 

19 18.90 3.78 14,039.15 15.57 1.49 5352.14 15.13 2.48 27,076.63 17.57 3.51 7604.86 

20 16.21 2.96 7857.95 13.79 2.98 10,584.67 16.35 4.79 13,525.24 15.13 3.02 6991.80 

21 16.57 4.10 13,374.72 12.94 1.32 7301.32 11.91 2.36 4723.39 14.09 0.96 6419.93 

22 18.68 2.56 10,408.75 13.92 2.23 7818.65 12.20 1.35 10,344.39 18.00 2.10 5413.27 

23 18.24 3.41 10,499.89 18.19 2.10 9826.84 14.94 2.50 5507.09 17.13 1.69 5186.42 

24 15.44 2.85 13,108.17 14.64 1.73 16,531.05 15.40 2.46 6547.30 16.59 1.09 6435.07 

25 19.52 4.93 9591.13 15.84 2.45 10,140.82 13.02 4.98 3574.75 17.09 1.83 4861.03 

26 17.31 3.24 13,190.46 15.54 1.96 6309.35 13.40 2.02 4600.17 14.55 1.96 12,418.08 

27 14.47 2.82 6813.66 14.63 1.90 6355.71 16.69 1.38 9268.76 18.41 3.67 7354.37 

28 15.67 1.99 5208.39 12.18 1.66 6179.75 16.31 2.46 15,539.29 16.65 1.73 6176.84 

29 15.73 2.75 5886.52 13.90 2.19 6529.49 10.66 3.64 8935.84 13.23 1.54 7726.71 

30 18.65 1.82 20,267.83 13.93 2.73 6838.97 9.41 2.19 4919.52 12.72 1.88 10,035.81 

31 13.03 1.32 3687.30 18.45 1.16 8025.35 19.38 2.03 7661.17 19.63 2.57 9823.96 

32 12.34 1.66 4441.24 15.11 1.03 10,272.18 14.63 3.41 13,610.07 20.75 3.45 8556.00 

Main effects plots allow the analyzer to visualize the parameters that may be influ-

ence the forecast positively (or negatively). Thus, the flexibility of analyzing forecasts by 

season, in terms of the parameters that most influence the entire process, stands out as 

one of the advantages of this methodology. Considering the average MAPE of each season 

of the year as a DOE response, the main effects of this execution can be identified. Here, 

the vertical axes of the graph show the average variation of the MAPE error, while the 

levels of each factor are distributed on the horizontal axes, i.e., in the case of photovoltaic 

forecasting, the smaller the error, the better the parameter level is. Figure 12 grouped four 

graphs, with Figure 12A showing the main effects of autumn, Figure 12B the main effects 

of winter, Figure 12C the main effects of spring and Figure 12D the main effects of sum-

mer.  
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Figure 12. Main effects plot for each season, considering the average error of all seventeen genera-

tion plants. Source: own authors. 

Autumn, represented by Figure 12A, presented interesting characteristics regarding 

the choice of some parameters, emphasizing the number of main components, which three 

adjusted well; the number of hidden layers was set to two; and the training algorithm was 

‘Levenberg–Marquardt’. The other parameters, with a smaller variation in the error, such as 

the normalization method, verify that ‘minMax’ fits well; the use of climatic variables, in 

this case, had little effect on the results; the linkage method for day groupings was ‘com-

plete’; the number of groups for cluster formation was four; the number of units per layer 

two; learning rate with little variation from one parameter to another; the number of 

epochs remained at 100; and the transfer function with little variation in error. Autumn 

was the only season of the year that differed from work expectations in terms of the use 

of climate variables. 

On the other hand, winter, represented by Figure 12B, emphasizes the use of climatic 

variables in the forecast, with significant interference in the error variation. The normali-

zation method that best fitted for this season was also ‘minMax’; the linkage method rep-

resented little variation in error; the number of clusters was four; the number of main 

components was three; the number of hidden layers two; the number of elements per layer 

hardly changes the error, as well as the number of epochs and the transfer function; the 

training algorithm was ‘Levenberg–Marquardt’. 

In the same way, spring, represented by Figure 12C, promotes greater emphasis on 

the use of climate variables in the forecasting process, having good representation in error. 

In general, parameters like normalization method point to ‘minMax’, like the previous 

ones; hidden layers 2; and ‘Levenberg–Marquardt’ training algorithm. The other parameters 

exert little influence on the forecast error, considering this season of the year. 
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Last but not least, summer, represented by Figure 12D, also highlights the use of cli-

mate variables in the forecasting process, contributing to the reduction of error. As in the 

other seasons of the year, the normalization method was kept as ‘minMax’ as indicated to 

reduce the error. The binding method for forming the groups of similar days was ‘Ward’; 

The number of main components three; the number of neurons per layer 1.5 (according to 

the multiplication equation explained in the previous section); and symmetric ‘sigmoid’ 

transfer function. The other parameters not mentioned have little influence on the error 

when varied. 

As expected from this investigation, most of the results indicate that the use of cli-

matic variables, with at least three principal components in dimensionality reduction, con-

tributes to the forecast error reduction. 

4.3. Ensemble Forecasting 

The motivation of the combination is to produce more accurate results than the best 

forecast components, considered individually. Thus, the combination of the prediction 

results used the Mixture DOE statistical tool to find the ideal weights so that the ensemble 

could be formed. Before, it was necessary to define how many factors (ingredients) would 

participate in this mixture. For this, the forecast results of each experimental run, initially 

processed, were classified according to the MAPE. Eight groups were chosen through 

cluster analysis, which uses the Ward linkage method with Euclidean distance. From these 

eight prediction groups, the one-way analysis of variance using Tukey's comparison pro-

cedure was performed, so that only the group(s) with the smallest MAPEs, statistically 

different from the others, were chosen. 

Figure 13 presents the interval plot that relates MAPEs by the groups. The group that 

statistically differed from the others and had the lowest MAPE was chosen. In the case of 

the forecast related to autumn, shown in Figure 13A, the results belonging to the '7' group 

were chosen, which were three elements. The winter season, indicated by Figure 13B, re-

vealed two statistically equal groups with lower MAPE, '4' and '7', with the total of these 

two groups having four elements. Spring identified the group numbered '2' in Figure 13C, 

which had five elements favorable to the combination, and summer classified the group 

numbered '8' in Figure 13D as the group with the lowest MAPE, having three elements. 

Thus, the formation of the Mixture DOE is a function of the number of elements (factors 

or ingredients) to be combined. In this case, each factor represents the weight that opti-

mizes the combination and aims to reduce the total MAPE. 
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Figure 13. Main effects plot for each season, considering the average error of all seventeen genera-

tion plants. Source: own authors. 

Table 6 summarizes the weight combinations for three elements. Here, the average 

MAPEs are presented for the autumn and summer seasons. Specifically, for autumn, the 

weights that best fitted the forecasts were (0.333, 0.333, 0.333) with a mean MAPE of 9.29% 

and a standard deviation of 7.23. For the summer, the combination of weights that best 

fitted the forecasts was (0.00, 0.50, 0.50), with a mean MAPE of 10.45% and a standard 

deviation of 7.34. 

Table 6. Mixture DOE arrangement considering three elements to be combined. Results for autumn 

and winter are listed. 

Definition of Weights AUTUMN SUMMER 

w1 w2 w3 Mean Std RMSE Mean Std RMSE 

1.000 0.000 0.000 11.81 14.69 8460.70 11.56 6.57 3761.88 

0.000 1.000 0.000 10.68 7.02 3455.29 10.85 8.52 5336.96 

0.000 0.000 1.000 10.26 8.57 3652.13 10.99 7.15 6303.67 

0.500 0.500 0.000 9.68 7.96 4688.76 10.79 6.30 3829.44 

0.500 0.000 0.500 10.18 8.42 5077.97 11.08 5.67 4512.14 

0.000 0.500 0.500 10.15 7.10 3300.25 10.45 7.34 5531.15 

0.333 0.333 0.333 9.29 7.23 3912.76 10.73 5.96 4473.37 

0.667 0.167 0.167 10.18 10.09 5961.57 11.14 5.59 3811.88 

0.167 0.667 0.167 9.50 6.67 3270.18 10.62 7.33 4766.44 

0.167 0.167 0.667 9.46 7.51 3525.27 10.75 6.36 5326.18 



Energies 2023, 16, 369 23 of 32 
 

 

Table 7 lists the combinations of weights for the day’s forecast whose season is win-

ter. This table presents four elements that participate in this combined forecast. The 

weights that make this mixture ideal are given by (0.00, 0.00, 0.50, 0.50) with an average 

MAPE of 9.11% and standard deviation of 5.55. 

Table 7. Mixture DOE arrangement considering four elements to be combined. Results for winter 

are listed. 

Definition of Weights WINTER  

w1 w2 w3 w4 Mean Std RMSE 

1.000 0.000 0.000 0.000 12.69 9.57 10,385.48 

0.000 1.000 0.000 0.000 12.14 8.56 3540.22 

0.000 0.000 1.000 0.000 10.18 7.19 7697.59 

0.000 0.000 0.000 1.000 10.62 8.16 4545.09 

0.500 0.500 0.000 0.000 10.13 7.16 6627.48 

0.500 0.000 0.500 0.000 10.27 7.85 9002.24 

0.500 0.000 0.000 0.500 10.24 6.11 5188.97 

0.000 0.500 0.500 0.000 10.20 6.89 5219.78 

0.000 0.500 0.000 0.500 9.77 5.79 3030.92 

0.000 0.000 0.500 0.500 9.11 5.55 4093.82 

0.333 0.333 0.333 0.000 9.92 6.43 6905.68 

0.333 0.333 0.000 0.333 9.55 5.01 4460.84 

0.333 0.000 0.333 0.333 9.48 5.73 5879.64 

0.000 0.333 0.333 0.333 9.60 4.59 3656.41 

0.250 0.250 0.250 0.250 9.49 4.78 5121.77 

0.625 0.125 0.125 0.125 10.43 6.92 7679.59 

0.125 0.625 0.125 0.125 10.29 5.95 4154.70 

0.125 0.125 0.625 0.125 9.82 5.28 6333.55 

0.125 0.125 0.125 0.625 9.11 6.01 3524.42 

Table 8 lists the weights for the spring day forecast. Since there are now five elements 

to combine, the table naturally grows. The ideal combination of these elements is given 

by the weights (0.00, 0.00, 0.333, 0.333, 0.333) with a mean MAPE of 6.75% and a standard 

deviation of 6.47. 

Table 8. Mixture DOE arrangement considering four elements to be combined. Results for spring 

are listed. 

Definition of Weights SPRING 

w1 w2 w3 w4 w5 Mean Std RMSE 

1.000 0.000 0.000 0.000 0.000 9.09 5.97 5375.06 

0.000 1.000 0.000 0.000 0.000 9.96 6.21 5865.79 

0.000 0.000 1.000 0.000 0.000 7.79 7.95 1911.04 

0.000 0.000 0.000 1.000 0.000 7.47 6.41 2405.00 

0.000 0.000 0.000 0.000 1.000 9.11 6.19 3509.90 

0.500 0.500 0.000 0.000 0.000 9.08 6.01 5559.79 

0.500 0.000 0.500 0.000 0.000 8.02 6.36 3143.83 

0.500 0.000 0.000 0.500 0.000 7.18 6.31 2681.28 

0.500 0.000 0.000 0.000 0.500 8.40 6.03 4327.25 

0.000 0.500 0.500 0.000 0.000 7.70 6.20 3257.93 

0.000 0.500 0.000 0.500 0.000 8.33 5.76 2873.90 

0.000 0.500 0.000 0.000 0.500 9.52 5.44 4568.76 
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0.000 0.000 0.500 0.500 0.000 6.96 6.76 1967.43 

0.000 0.000 0.500 0.000 0.500 6.86 6.53 2335.71 

0.000 0.000 0.000 0.500 0.500 7.91 5.94 2230.48 

0.333 0.333 0.333 0.000 0.000 8.05 5.97 3925.49 

0.333 0.333 0.000 0.333 0.000 7.94 6.06 3595.62 

0.333 0.333 0.000 0.000 0.333 8.76 5.92 4789.12 

0.333 0.000 0.333 0.333 0.000 6.89 6.64 2247.16 

0.333 0.000 0.333 0.000 0.333 7.51 6.10 3186.68 

0.333 0.000 0.000 0.333 0.333 7.40 6.30 2916.67 

0.000 0.333 0.333 0.333 0.000 7.30 6.15 2288.46 

0.000 0.333 0.333 0.000 0.333 7.75 5.85 3289.61 

0.000 0.333 0.000 0.333 0.333 8.59 5.40 3053.61 

0.000 0.000 0.333 0.333 0.333 6.75 6.47 1984.66 

0.250 0.250 0.250 0.250 0.000 7.35 6.23 2930.91 

0.250 0.250 0.250 0.000 0.250 7.97 5.77 3769.22 

0.250 0.250 0.000 0.250 0.250 8.03 5.97 3543.74 

0.250 0.000 0.250 0.250 0.250 7.00 6.31 2488.77 

0.000 0.250 0.250 0.250 0.250 7.47 5.91 2547.88 

0.200 0.200 0.200 0.200 0.200 7.45 6.06 3019.06 

0.600 0.100 0.100 0.100 0.100 8.11 5.95 4140.78 

0.100 0.600 0.100 0.100 0.100 8.64 5.82 4363.38 

0.100 0.100 0.600 0.100 0.100 7.02 6.78 2172.83 

0.100 0.100 0.100 0.600 0.100 7.09 6.29 2010.39 

0.100 0.100 0.100 0.100 0.600 8.11 5.89 3239.70 

When one of the weights is null, it indicates that that respective element does not 

contribute to the formation of the ensemble and can be discarded, since the multiplication 

by zero is zero. A geometric representation of each combination can be visualized using 

the triangle (for three elements) and the tetrahedron (for four elements). Five or more el-

ements are feasible, but the geometric representation is more difficult to see. From this 

perspective, Figure 14 presents the representation of the ideal point of a combination of 

forecasts for each season of the year, except spring (which has five weights). Autumn and 

summer appear in Figure 14A,C, respectively, through the triangle and winter in Figure 

14B, through the tetrahedron. 

 

Figure 14. Adjusted weight combination that configures the smallest forecast errors for the seven-

teen generation plants, separated by season: (A) Autumn—(0.33, 0.33, 0.33); (B) Winter—(0.0, 0.0, 

0.5, 0.5); (C) Summer—(0.0, 0.5, 0.5) and spring, which is not plotted because the combination ele-

ments contained 5 factors (hard to see): (0.0, 0.0, 0.33, 0.33, 0.33). Source: own authors. 
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As each generation plant has a photovoltaic generation capacity different from the 

others, forecasted values may vary in scale. This phenomenon is also observed during the 

calculation of the RMSE, which penalizes higher errors in its metric. Therefore, the actual 

values and the predicted values are shown in Table 9. The lowest values in scale are ob-

served in Machado and Passos, respectively, and the highest values in scale are observed 

in Ituporanga. 

These forecasted values were compiled into a chart (Figure 15) where each red dot 

represents a forecast value for one day ahead for each generation plant. The yellow dots 

indicate the actual generation values. Charts are grouped by season. 

Table 9. Predicted values and actual generation values for each generation plant, grouped by sea-

son. 

 
Autumn (kWh) Winter (kWh) Spring (kWh) Summer (kWh) 

Forecast Real Forecast Real Forecast Real Forecast Real 

Aracaju 23,966.9 25,100.0 37,126.3 41,400.0 42,642.3 43,118.0 34,683.0 36,403.0 

Bage 36,250.4 28,229.0 40,877.2 46,476.0 39,031.7 41,862.0 22,631.5 22,844.0 

Barbalha 3101.9 3168.0 3371.6 3014.0 3970.1 3159.0 23,961.9 20,956.0 

Barueri 47,669.9 45,977.0 53,013.0 46,942.0 47,681.3 54,056.0 37,575.8 38,812.0 

Belo Horizonte 28,805.3 24,957.0 18,224.7 15,512.0 16,866.0 18,754.0 16,146.4 13,701.0 

Brasilia 20,120.9 18,225.0 22,514.6 22,032.0 15,121.7 15,478.0 15,899.9 15,984.0 

Itajai 8384.9 9402.0 8033.4 7605.0 9712.8 9520.0 8755.7 9720.0 

Ituporanga 68,829.9 58,946.0 107,354.5 117,897.0 168,483.8 168,432.0 119,304.8 135,011.0 

Ji-Parana 9808.7 10,432.0 8177.1 7366.0 10,764.1 11,961.0 7405.9 7480.0 

Machado 220.4 257.7 311.6 312.0 245.3 254.3 172.0 197.7 

Maraba 25,813.7 24,615.0 26,053.5 28,083.0 24,613.9 24,486.0 12,448.9 15,569.0 

Marilia 22,322.1 24,250.0 21,858.0 21,542.0 26,387.1 28,331.0 20,681.1 20,174.0 

Niteroi 23,489.4 23,360.0 17,769.2 15,130.0 28,390.5 29,550.0 25,353.6 23,490.0 

Passos 251.7 242.6 249.2 247.8 315.0 276.0 242.7 207.9 

Prim. Leste 54,816.4 46,617.0 58,563.1 51,203.0 76,454.9 75,619.0 67,369.0 80,916.0 

Rio Grande 8773.2 9258.0 15,973.9 18,324.0 20,349.2 18,887.0 19,782.9 17,510.0 

Rio Negrinho 22,120.3 23,390.0 30,433.1 33,236.0 30,766.4 28,696.0 23,055.2 30,180.0 
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Figure 15. Predicted versus actual values plot, grouped by season. 

The map in Figure 16 displays the final, combined forecast for each photovoltaic gen-

eration plant and its respective MAPEs. The highest numerically observed values of the 

MAPEs were 28.4% (autumn—Bagé) and 23.6% (summer—Rio Negrinho). On the con-

trary, the numerically lower values for each season were 0.1% (winter—Machado and 

spring—Ituporanga), 0.5% (autumn—Niterói and spring—Niterói), 0.6% (winter—Pas-

sos) and 0.9% (summer—Bagé). The season with the lowest overall average was spring, 

possibly because it is less subject to uncontrollable factors, such as movement of clouds, 

dust, etc. 
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Figure 16. Error intensity map by season: the results displayed are the minimum MAPEs found for 

each generation plant, after the process of combining the results. The maps were generated using 

the JavaScript language, through the open source library jQuery MAPAEL [79]. Source: own au-

thors. 

There are studies that use different databases of regions with different characteristics 

from each other. For purposes of comparison with the works developed in the existing 

literature, the results that use the MAPE metric associated with machine learning models 

and hybrid models are perceived in an average error range of 10% to 15%, approximately. 

These values were obtained from [80], which investigated about 180 papers related to 

photovoltaic generation forecast published in the last fifteen years. Therefore, the results 
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found in the case study of this work were optimized from the average error of seventeen 

generation plants, analyzed together. These results are consistent with the study proposed 

by [80]. 

5. Conclusions 

This work presented a photovoltaic generation prediction methodology, whose ver-

satility allows the analyzer to identify the parameters that most interfere with the results. 

As the main contribution, the reduction of dimensionality of meteorological data in this 

process is highlighted. Keeping the levels of explanation of the variables, the reduction of 

the data set using PCA explained the variance of seventeen climatic variables, reducing 

them to two or three variables, with a satisfactory degree of average explanation around 

75–85%.  

It was experimentally found that the combined forecast produced better results when 

compared to the best forecasters, considered individually. The case study covered 17 gen-

eration plants located in different regions of the Brazilian territory, and the parametric 

evaluation considered all these plants together. The smallest mean errors found for the 

combined seasonal forecast were 9.29% and standard deviation 7.23 for autumn, 10.45% 

and standard deviation 7.34 for summer, 9.11% and standard deviation 5.55 for winter 

and 6.75% and standard deviation 6.47 for spring. Since the amount of climate data and 

photovoltaic generation tends to increase, future work should explore other heuristic 

methods besides ANNs to verify the fit to the data, which can be different for different 

regions. 

Therefore, this article presents a methodological proposal that promotes advances in 

the studies and practice of adopting one-step-ahead prediction models based on machine 

learning for short-term predictions. Specifically, the one-day-ahead time horizon was con-

sidered. Faced with the challenge of guaranteeing greater precision, the proposed model 

brings contributions insofar as it reduces training time and computational costs, and op-

timizes hyperparameters of the algorithms and models complex temporal characteristics. 

Furthermore, the choice of forecasting methods based on artificial intelligence and 

not strictly on traditional statistical methods allowed the reproduction of non-linear be-

haviors more accurately. It is also worth mentioning the theoretical contribution of this 

research in several fields of knowledge. The multidisciplinary bias of the study, involving 

statistics, engineering and data science, brings advances in different areas. 

Limitations of this study include, since heuristic methods are considered: there is no 

guarantee of obtaining the optimal forecasting solution, as well as uncontrollable factors 

(such as dust deposited on the panels, damaged sensors, lack of data, etc.) that can lead to 

inconsistent predictions. 
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